
HCE 全⾯面介绍
关于HCE的作⽤用原理理系统架构交易易要素的全⾯面介绍

原理理 架构 交易易要素 场景



NFC简介

定义

近距离⽆无线通讯NFC是⼀一

种⽆无线⾼高频通讯技术

距离

10公分之内近距离资料料交

换

速度

每秒传1kbit

连接

碰触就可连结 

⽆无需预先配对或开启应⽤用

程序

NFC



NFC三种模式

两台NFC设备间的信息交换

点对点模式 读写模式

模拟多种实体卡⽚片功能，实现

NFC装置⽀支付或安全功能。NFC

装置必须使⽤用内建安全元件

(Security Element, SE)的NFC芯

⽚片。

卡模拟模式

⼿手机对⼿手机通讯、⼿手机当POS读写卡、⼿手机当卡⽚片与POS交互

1 2 3

智
能
卡

RFID

nfc 
tag

NFC
设备



NFC特点

定义

近距离⽆无线通讯NFC是⼀一

种⽆无线⾼高频通讯技术

距离

10公分之内近距离资料料交

换

速度

每秒传1kbit

连接

碰触就可连结 

⽆无需预先配对或开启应⽤用

程序



NFC终端通讯环境

Android 两种操作模式

Host-based Card 

SE-based Card 
Host CPU

Android OS

安全
模块

NFC 
Controller

读卡器

select AID “x”

select AID “y”



NFC终端可信环境

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

GlobalPlatform 
TEEE functional API

GlobalPlatform TEEE Client API

Rich OS

Hardware Platform

GlobalPlatform TEEE Internal API

可信核⼼环
境

可信函数

TEE Kernel

HW Secure 
Resources

HW密钥，安全存储、可信UI（键
盘，显⽰）、加密权限，NFC控制、
安全模块

可信扩展环境

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

可信应⽤ 
版权

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

可信应⽤ 
⽀付

可信应⽤ 
政府

page 6

White paper - HCE Security Implications, analyzing the security aspects of HCE

 

A real-time calculation on a Cloud-based 

SE cannot guarantee this kind of 

transaction speed. Therefore, Cloud-based 

SE solutions typically include a 

tokenization mechanism to allow 

transactions up to a certain number and 

value. Google Wallet for instance deploys 

a form of “tokenization”. Section 4.2.3 

explains the concept of tokenization. 

 

A fundamental issue with any 

Cloud-based SE is how to enable the 

handset to securely identify itself to the 

cloud. If credentials to the Cloud-based SE 

are stored inside the HCE service then this 

severely limits the extra security which 

can be supplied by the Cloud-based SE 

solution. This problem could be solved by 

requiring user interaction for accessing 

the cloud, which would in turn negatively 

impact the user experience. Another 

solution could be to use the hardware SE 

to authenticate towards the Cloud-based 

SE.  

 

4.1.3 TEE 

The Trusted Execution Environment is a 

separate execution environment that runs 

alongside the OS and provides security 

services to that environment.  

 

As illustrated in Figure 3, the TEE isolates 

access to its hardware and software 

security resources from the OS and its 

applications. The TEE runs its own separate 

OS and therefore is not compromised 

when the main OS is rooted. In that way, 

the TEE can be used to provide a higher 

level of security than the basic approach 

described in Section 4.1.1. It does not 

reach the security level provided by an SE 

because it does not have the SE’s tamper-

resistance.  

 

Note that TEE standardization is not yet 

finalized.  

 

4.1.4 UICC or embedded SE 

This option offers the most advanced 

form of security on the Android device. 

It is questionable whether this option in 

combination with HCE really makes sense 

to an SP, because it seems to provide no 

additional advantages over traditional, 

SE-based NFC. It adds complexity in the 

routing through the Android OS where a 

direct link to the SE is available. 

 

4.2 Security mechanisms 

 

A wide range of mechanisms exists to 

make applications more secure. We list a 

selection of these below. In principle, these 

mechanisms can be applied to the four 

locations specified above and combined 

with each other to provide increased risk 

mitigation. Obviously, enhancing the 

protection typically leads to extra steps for 

the user to execute and/or developer to 

implement. There is a trade-off between 

security, end-user convenience and costs 

that the SP should consider. 

 

4.2.1 User and hardware verification 

Payment transactions can be made 

more secure by verification of the user 

and/or the hardware that is used in 

the transaction. Typical verification 

mechanisms to enhance security include 

the verification of: 

knows (Username/

password combinations, PIN, etc.) 

has. For example Device 

ID, smartcard reader, sticker, etc. 

 behaves. For instance if a 

payment is done in geographically distant 

places very quickly after one another, such 

payment transactions could be denied. 

user authentication receives increasing 

attention, for instance by use of finger-

print-scans, voice- and facial-recognition, 

iris-scans, etc.  

 

4.2.2 Transaction constraints  

To limit the impact of potential security 

breaches, transactions could be limited in 

various ways, e.g.: 

transaction parameters in systems from 

the issuing bank)  

number of transactions per timeframe 

 

We note that such transaction constraints 

cannot be adapted by a malicious user in 

a fake app. These transaction constraints 

are signed by the issuer with a key that is 

not present on the card (and therefore not 

present in the app). The constraints can 

therefore not be manipulated.  

 

 

 
Figure 3: TEE architecture (Source: 

GlobalPlatform Inc.)

Rich OS 应⽤环境

Client 应⽤



Lorem Ipsum Dolor Sit Amet01

Lorem Ipsum Dolor Sit Amet02

Lorem Ipsum Dolor Sit Amet03

Lorem Ipsum Dolor Sit Amet04

CONTENT



1 银联关于HCE的架构
PART ONE



银联HCE发卡架构

移动应⽤平台
云⽀付平台(云端服务提供⽅）

银联TSP平台
移动设备

移动应⽤/数字线包

HCE

NFC

个⼈化数据 个⼈化模板

云帐户 交易验证 交易处理

⽣命周期管理 后交易处理

账单服务

报告服务

发卡⽅后
台服务

银联转
接清算

终端读卡器

收单



银联HCE架构与电商的关系

移动应
⽤平台

云⽀付平台(云端服务提供⽅）

银联TSP平台
移动设备

移动应⽤/数字线包

NFC

移动钱包

云帐户 交易验证 交易处理

⽣命周期管理 后交易处理

账单服务

报告服务

发卡⽅后
台服务

银联转
接清算

终端读卡器

收单

电商
平台

云⽀付插件



银联HCE架构产业链间的关系

发卡⽅方

移动应
⽤平台

云⽀付平台(云端服务提供⽅）

银联TSP平台
移动设备

移动应⽤软件

NFC移动钱包

云帐户 交易验证 交易处理

⽣命周期管理 后交易处理

账单服务

报告服务

发卡⽅后
台服务

银联转
接清算

终端读卡器

收单

电商
平台

云⽀付插件

运营⽅方

商
户



2 银联关于HCE的交易易流程说明
PART TWO



NFC终端交易易指令要求

Host CPU

Android OS

安全
模块

NFC 
Controller

读卡器

select AID “x”

select AID “y”

APDU指令只能来⾃自NFC控制器器，否则⼀一律律不不接收

SELECT 命令：选择(SELECT)命令通过⽂文件名或AID来选择IC卡
                          中的PPSE或⽀支付应⽤用的AID。

可接收指令列列表：

ReadRecord  ：读记录(READ RECORD)命令从⼀一个线性⽂文件中
                          读⼀一条⽂文件记录。从IC卡返回的响应中将包含这
                          条被读出的记录。

GPO  命令     ：获取处理理选项(GPO)命令⽤用来启动IC卡内的交易易
                          IC卡的响应报⽂文中包含应⽤用交互特征(AIP)和应⽤用
                          ⽂文件定位器器(AFL)。



NFC终端交易易指令要求

Android OS

数字钱包

安全
模块

NFC 
Controller

读卡器

select AID “x”

（1）建⽴立安全通道

（2）⽣生成交易易凭证

（3）下发交易易凭证

（4）拍卡闪付交易易

云1

2

Token

3

4



银联HCE架构中的⽀支付流程及要素

云⽀支付平
台

TSP平台

移动
设备

发卡⽅方后
台服务

清算
⽹网络

终端读卡器器

TR平台

交易易凭证下载NFC

密⽂文校验

⽀支付交易易流程
去标记化

Token申请流程

Token申请



银联HCE架构中的⽀支付流程及要素

移动应
⽤平台

云⽀支付平台(云端服务提供⽅方）

银联TSP平台

移动设备

移动应⽤/数字线包

NFC

移动钱包

云帐户 交易验证 交易处理

⽣命周期管理 后交易处理

账单服务

报告服务

发卡⽅方后
台服务

银联转接
清算

终端读卡器器

收单

电商
平台

云⽀付插件

⾦金金融⽀支付类交易易

消费
类

预授
权类

取现
类

转账
类

余额
查询
类

账户
验证

受理理⽅方、发卡⽅方与cups之间的交易易正
常处理理流程，与基于PAN的交易易的正
常处理理保持⼀一致

标记化交易

标记化验证交易

去标
记化
交易



银联HCE架构中的⽀支付业务模型

云端⽀支付业务模型



银联HCE架构中的⽀支付业务模型

前端⽀支付业务模型



云端⽀支付业务流程

银联HCE架构中的⽀支付业务模型



云端⽀支付发卡流程

银联HCE架构中的⽀支付业务模型

3、⽤用户身份验证



银⾏行行HCE⽀支付系统架构

银⾏行行⾦金金融IC
卡系统

密钥系统

数据准备

个⼈人化系统

TSM
空中发卡

空中充值

SE对接

云⽀支付

卡密钥托管

密钥运算

APP认证
Host 
CPU

HCE-APP

⼿手机钱包

⼿手机钱包

安全模块

NFC 
Controller

运营商
TSM



NFC终端两种认证⽅方式

Host CPU

NFC 
Controller

云端模式

优点 ：密钥更更安全

前端模式

缺点 ：需要实时联⽹网

适⽤用 ：⼤大额联机交易易
APP

密钥

Host CPU

NFC 
Controller

后台

密钥

读卡器

APP

优点 ：快速交易易

缺点 ：密钥可能被泄漏漏

适⽤用 ：⼩小额快速脱机交易易 



银联HCE架构中的⽀支付安全性

通讯安全：TLS/SSL

敏敏感数据：

云存储

下载加密

终端安全存储使⽤用



银联HCE架构中的⽀支付流程数据说明

⾦融⽀付类交易

消费类 预授权类 取现类 转账类 余额查询类 账户验证

消费（⼀次性
付款）

消费（⼀次性
付款）冲正

受理⽅、发卡⽅与cups之间的交易正常处理流程，与基于PAN的交易的正常处理保持⼀致



银联HCE架构中的⽀支付流程63域数据说明

域总长
度

⽤法
ID1

⽤法ID1
长度

⽤法ID1
取值

⽤法
IDn

⽤法IDn
长度

⽤法IDn
取值

标记⽀付信息Token相关信息 
TK

TLV1+TLV2+…+TLVm 
定义与报⽂55域中的TLV定义保持⼀致，具体参见《联⽹联合技

术V2.1第2部分》

⾦融⽀付类交易

⼦子域名称 tag标签 ⼦子域属性 ⼦子域说明

银联是否验证token 1 an1

token 2 an..19(LLVAR)

有效期 3 an4

担保级别 4 an..2(LLVAR)

应⽤用场景 5 n2



3 visa 移动⽀支付体系建设介绍
PART THREE



visa在移动⽀支付上历程



⽬目前基于SE的移动⾮非接⽀支付⽣生态系统



⽬目前的移动⾮非接⽀支付⽣生态系统



Visa Cloud Based Payment(VCBP)

HCE
Host Card Emulation    主机芯⽚片模拟
A new feature in Android 4.4(kit kat)that allows any 
NFC application on an Android device to emulate a  
smart card   新增功能允许⼿手机应⽤用模拟安全芯⽚片

Cloud-Based Payments
Payments that are enabled by accounts that are  
managed in systems residing in a network rather  
than in secure hard ware solutions inside the mobile  
device 安全芯⽚片云端化⽅方案

Visa Cloud Based Payment(VCBP)
Provides standards,specifications,tools,and services to issuers, 
merchants,and 3rd party partners that enable a systems solution 
for cloud-based payments ⾯面向整个交易易链条的标准、规范、⼯工具服务 



on-Device  vs. Cloud-Based Payments+HCE

Secure Element Host Card Emulation



on-Device  vs. Cloud-Based Payments+HCE

Secure Element Host Card Emulation



Core Functions needed for Cloud-Based Payments



Multiple layers of security measures collectively ensure the security of the ecosystem 多层级的综合安全 

 • Dynamic chip based cryptography 动态的交易易验证码  

 • Tokenization or alternate PAN 隔离帐户数据  

 • Storing and processing sensitive data on a server “in the cloud” 云端存储  
To ensure the card data is secured on the phone 移动终端上的数据安全  

 • Mobile Payment Application Security 移动⽀支付应⽤用安全性  

 • Operating Systems check for rooting, malware, viruses OS提供的安全性  

 • Payment data lifecycle management 帐户信息的⽣生命周期管理理 

How to ensure the security



4 关于数据安全中的PCI规范思想
PART FIVE



⽀支付卡⾏行行业 (PCI) 数据安全标准 

PCI 数据安全标准 要求和安全评估程序将 12 条 PCI DSS 要求作为基础,并将这些要求与相应的测试程序融⼊入到
安全评估⼯工具中。此标准的设计⽬目的是供评估者使⽤用,以对必须验证 PCI DSS 合规性的商家和服务提供商进⾏行行现
场评估。 

制定⽀支付卡⾏行行业 (PCI) 数据安全标准 (DSS) 以促进并提⾼高持
卡⼈人数据安全,有利利于全球⼴广泛采⽤用统⼀一的数据安全标准。



⽀支付卡⾏行行业 (PCI) 数据安全标准—安全体系结构 

维
护并构建安全⽹网络

保护持卡
⼈人数据

维护
漏漏洞洞
管理理
程序

定期监控和测试⽹网络

执⾏行行
严格
访问
控制
措施

维护信息安全策略略

要求1：安装防⽕火墙配置并予 
             以保护
要求2：不不要使⽤用默认的系统 
             密码及其它参数

要求3：保护持卡⼈人数据
要求4：开放型的公共⽹网 
             持卡⼈人数据加密

要求5：杀毒软件并更更新

要求6：开发维护安全系 
             统和应⽤用程序

要求11：定期测试安全系统和流程

要求10：跟踪和监控访问⽹网络资源 
               和持卡⼈人数据的所有操作

要求9：限制对持卡⼈人数据的物理理 
             访问

要求7：只有业务需求⼈人才可访问

要求8：为每位访问计算机的⼈人员 
             分配唯⼀一的标识

要求12：维护针对信息安全的政策



⽀支付卡⾏行行业 (PCI) 数据安全标准—需要保护的核⼼心数据对象

主账户
PAN

持卡⼈人
姓名

业务代码
失效⽇日

完整磁条
数据

CAV2/
CVC2/

CVV2/CID PIN/PIN
数据块

持卡人数据

敏感认证数据

允许存储 需要保护 PCI DSS

√

√

√

√

√

√

√

√

√

X

X

X

X

X

X



⽀支付卡⾏行行业 (PCI) 数据安全标准—保护持卡⼈人数据对象具体要求

主账户
PAN

持卡⼈人
姓名

业务代码 失效⽇日

完
整磁条数
据

CAV2/CVC2/
CVV2/CID

PIN/PIN
数据块

持卡人数据

敏感认证数据

存储最⼩小化 
业务需要哪些存哪些，

不不⽤用不不存

存储⼤大⼩小 保留留时间 处理理策略略

政策、业务、法规、记录

1、授权认证后不不存储 
2、删除后不不可恢复 
3、任何磁道上的全部
内容都没有在任何环境
下存储 
4、验证代码任何情况
下都不不存储

交易易数据

⽇日志数据

存档⽂文件

跟踪⽂文件

数据库

PAN处理理要求

不不可全显示 不不可读 ⽇日志不不可写 加密独⽴立性 

  

密钥管理理

防
泄
露露

防
盗
⽤用

管
理理
⼈人
员
最
少

存
储
地
点
最
少

密钥⽣生成

密钥分发

密钥存储

作废更更新

双
⼈人
保
管
机
制

更更
新
授
权
机
制



⽀支付卡⾏行行业 (PCI) 数据安全标准—根据这些要求可能会出现的产品

主账户
PAN

持卡⼈人
姓名

业务代码 失效⽇日

完
整磁条数
据

CAV2/CVC2/
CVV2/CID

PIN/PIN
数据块

持卡人数据

敏感认证数据

数据库存储保护软件

⽣生成与认证平台

交易易数据

⽇日志数据

存档⽂文件

跟踪⽂文件

数据库

脱敏敏产品

  密钥管理理

类似SOC？ 

1、展示数据流
转的系统路路径。 
2、提定节点的
数据处理理策略略 
3、收集节点⽇日
志检查合规性 
4、给出不不同节
点的⻛风险度 
5、⼀一⽬目了了然地
看到PCI策略略的
要求执⾏行行情况



5 产品思路路整体规划

PART THREE



⾦金金融IC卡整体解决⽅方案

⾦金金融IC卡密钥管理理系统
(PBOC2.0/3.0/EMV)

⾦金金融IC卡数据准备系统
(PBOC2.0/3.0/EMV)

信⽤用卡中⼼心
个⼈人化系统

借记卡个⼈人
化系统

⾏行行业数据准备系统

⾏行行业密钥管理理系统

多应⽤用数据集成
系统

多应⽤用实时打卡
系统

柜台 柜台

多应⽤用移
动数据集
成系统

TSM平台

云卡平台

卡密钥存
储平台

卡数据存
储平台

卡计算平台

卡交易易处理理平台

⽤用户卡⽣生命周期管理理平台

终端（移动设备/SE）管理理及认证平台

SE⼿手机 虚拟卡⼿手机

云卡
个⼈人
化平
台



密码产品发展路路线

⼩小规模密钥存储技术 
（以加密机为主）

⼤大规模密钥存储技术

密码服务平台

密钥管理理技术

⼤大规模密钥管理理

⼤大规模密码服务
平台

统⼀一认证
平台

TSM平台

云卡平台

密钥存储技术



密码产品发展路路线与技术沉淀的关系

⼤大规模密钥存储技术 
（新）

密码服务平台

密钥管理理技术
密钥存储技术

1、密钥存储技术—加密设备应⽤用技术 
2、密钥管理理技术。 
3、任务分配与并⾏行行处理理技术 
4、⼤大⽤用户量量⼤大交易易量量处理理技术 
5、多次往返类事件处理理技术 
6、多⽤用户多应⽤用并⾏行行处理理技术

并⾏行行
处理理
技术

任务
分配
技术

TSM平
台

加密
机管
理理技
术

⼤大⽤用户量量⼤大交
易易量量处理理技术

多次往返类事
件处理理技术

多⽤用户多应⽤用
并⾏行行处理理技术



密码产品发展路路线与应⽤用销售的关系

⼩小规模密钥存储技术 
（以加密机为主）

密钥存储技术 ⼩小规模密钥存储技术的特点

        ⼩小规模密钥存储技术是指以加密机、加密卡为基础，存储和使⽤用的技术。它
的特点是： 
         1）存储的密钥少，多以对称密钥的应⽤用为主，⾮非对称密钥为辅。 
         2）对称密钥多以分散为主要的密钥产⽣生⽅方法 
         3）⾮非对称密钥⽬目前来看，主要应⽤用在⾦金金融IC卡上，证书格式为特殊格式，
即⾮非x509标准的证书。 
          4）它的应⽤用范围多集中在⽀支付⼯工具的发⾏行行使⽤用上，⽀支付认证⼯工具泛指各⾏行行
各业的ic卡应⽤用、动态⼝口令应⽤用、usbkey应⽤用。扩展来看，凡是拿在⽤用户⼿手中的
具有独⽴立安全芯⽚片可以存储密钥的（与外形接⼝口⽆无关）⼯工具，这类⼯工具都可称为
⽀支付认证⼯工具。 
         5）所谓⼩小规模密钥存储技术对我们的销售并⽆无太意义，实质上它就是加密
机、加密卡、ic卡、usbkey的别称。在这⾥里里提出只是为了了技术和概念纳⼊入到⼀一个
体系中。 
         6）销售过程中只需要将其与加密机、加密卡、ic卡、usbkey挂勾就可。其
中后台与加密机、加密卡挂勾，终端层⾯面与ic卡、usbkey挂勾。



密码产品发展路路线与应⽤用销售的关系

⼩小规模密钥存储技术 
（以加密机为主）

密码服务平台

密钥管理理技术
密钥存储技术

基于⼩小规模密钥存储技术的密钥管理理技术
        基于⼩小规模密钥存储技术密钥管理理是指以加密机、
加密卡为基础，为业务系统提供密钥的产⽣生、存储、备份、
分发的管理理功能。它的特点是： 
         1）由于对称密钥采⽤用分散产⽣生的⽅方法，因此理理论上
管理理的密钥数量量是有限的。 
         2）密钥管理理系统与业务应⽤用过程中的密钥使⽤用系统
是分离的 
         3）密钥管理理系统负责产⽣生和管理理密钥，密钥使⽤用系
统负责密钥的使⽤用。 
          4）它的应⽤用范围多集中在⽀支付⼯工具的发⾏行行使⽤用上
也可以系统内部信息交流传输所需的密钥进⾏行行统⼀一管理理。 
         5）所谓⼩小规模密钥密钥适⽤用树状的管理理体系中。 
         6）销售过程中它实质上集成了了加密机的密钥存储技
术和数据库的密钥存储技术。它的典型应⽤用领域包括：⾦金金
融IC卡（pboc2.0/3.0/emv/第三⽅方预付费卡）、⾏行行业卡
（社保、公交、市⺠民卡、校园卡、智能⼩小区卡、加油卡等）



密码产品发展路路线与应⽤用销售的关系

⼩小规模密钥存储技术 
（以加密机为主）

密码服务平台

密钥管理理技术
密钥存储技术

基于⼩小规模密钥存储技术的密码服务技术
        基于⼩小规模密钥存储技术密码服务是指以加密机、
加密卡为基础，为业务系统提供加密、解密、签名认证等
密钥使⽤用功能。它的特点是： 
         1）密码服务以使⽤用密钥使⽤用为核⼼心。 
         2）它实质上也有密钥存储 
         3）它实质上也有密钥管理理，不不过是使⽤用管理理。 
          4）从整体考虑，它不不负责密钥的产⽣生，只负责使
⽤用。 
         5）它与业务通过接⼝口服务体现。 
         6）销售过程中、它可以不不局限在IC卡领域，任何业
务系统都可以。 
        7）密码服务平台演变—如果密钥存储采⽤用加密卡形
式。即⼀一台服务器器通过插加密机⽽而不不是连接加密机。则会
演变为左下结构 
       8）演变后的密码服务模块对三味公司的服务器器+密码
卡的⽀支持会提升到⼀一个实⽤用领域。

演
变

业务服务器器 业务服务器器

业务终端

业务
模块

业务
模块

密码服务模块

加密卡 加密卡



密码产品发展路路线与应⽤用销售的关系

⼩小规模密钥存储技术 
（以加密机为主）

密码服务平台

密钥管理理技术
密钥存储技术

TSM

TSM平台⽬目前较为混乱，
我们的理理解是否得到业界
⼀一致还需要检验。我们的
理理解是发⾏行行完成为出发点，
⽽而不不是刻意强调TSM。 
1、组成或需要的技术：
se应⽤用及se管理理技术、
se的应⽤用发⾏行行技术、se应
⽤用数据个⼈人化技术 
2、从使⽤用场景上看，它
可以应⽤用于⼿手机等移动发
⾏行行、也可以应⽤用于柜台等
远程发⾏行行。 
3、从销售领域来看，它
可以⽤用在银⾏行行、第三⽅方的
移动⽀支付，也可以⽤用在任
何⾏行行业的远程柜台发卡

演
变

业务服务器器 业务服务器器

业务终端

业务
模块

业务
模块

密码服务模块

加密卡 加密卡

TSM平台



密码产品发展路路线与应⽤用销售的关系

⼩小规模密码产品的路路线就是以加密机、
加密卡为切⼊入、通过密钥管理理和密码
服务平台逐步向应⽤用归集的路路线

⼩小规模密码产品，以加密机为切⼊入点、从密钥管理理和密码
服务为基础，逐步向业务结合的⽅方向发展。例例如，我们现
与IC卡⾏行行业结合.

⼩小规模密码产品，以密钥管理理和密码服务平台为基础，并
不不局限在以IC卡应⽤用为代表的领域，还可以⼴广泛应⽤用在各
⾏行行各业的需要数据加密的系统中。这可能难以具象化，⽐比
如现在通讯加密领域、数据库加密领域、如果和CA结合
起来，可以构成⾳音像制品、图书的版本保护和在线分发、
传统的⽂文档加密等等。

对于各位销售来说，对以下事项应密切关注，并引起⾜足够
重视： 
1）以⼯工控为代表，数据表现为指挥命令的安全 
2）以交易易为代表，数据表现为钱的⽀支付安全 
3）以审批为代表，数据表现为办公数据的安全 
4）以档案为代表，数据表现为⽂文件数据的安全 
5）以⾳音像图书为代表，数据表现为版权的安全 
这些安全都与密码学密切相关，是我们与CA结合的产
物，⾄至少也可以将加密机引⼊入。



密码产品发展路路线与应⽤用销售的关系

⼤大规模密码产品的路路线就不不能⾛走⼩小规模产品从⼩小到⼤大（从加密机向应⽤用结合）的路路线

事实上加密机的诞⽣生，也是因
为⾦金金融安全的需要，从业务到
产品、从上到下发展起来的。

站在加密机的⻆角度去看、或思
考：『云该要啥？』实质是削
⾜足适履履。

我们的产品
思路路

当我们回答不不了了云能做啥的时候

我们不不应考虑⽣生产通⽤用的云产
品，适合各种云？

我们可以回答某朵云的具
体要求的时候，可以特制
产品，例例如HCE云安全

⼤大规模密码产品的路路线则是从HCE云的技术需求向下推导⽽而
出，也许会出现加密机、密钥管理理、密码服务平台之外新产
品需求也未可知！！



密码产品发展路路线与技术沉淀的关系

1、密钥存储技术—加密设备应⽤用技术 
2、密钥管理理技术。 
3、任务分配与并⾏行行处理理技术 
4、⼤大⽤用户量量⼤大交易易量量处理理技术 
5、多次往返类事件处理理技术 
6、多⽤用户多应⽤用并⾏行行处理理技术

云卡平台

卡密钥存
储平台

卡数据存
储平台

卡计算平台

卡交易易处理理平台

云卡
个⼈人
化平
台


